Institutional Repository
    • Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   University of Economics & Technology Repository
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü / Department of Biomedical Engineering
  • View Item
  •   University of Economics & Technology Repository
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü / Department of Biomedical Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Obstructive Sleep Apnea Classification With Artificial Neural Network Based On Two Synchronic HRV Series

Thumbnail
Date
2015-04
Author
Aksahin, Mehmet
Erdamar, Aykut
Firat, Hikmet
Ardic, Sadik
Eroğul, Osman
Metadata
Show full item record
Abstract
In the present study, "obstructive sleep apnea (OSA) patients" and "non-OSA patients" were classified into two groups using with two synchronic heart rate variability (HRV) series obtained from electrocardiography (ECG) and photoplethysmography (PPG) signals. A linear synchronization method called cross power spectrum density (CPSD), commonly used on HRV series, was performed to obtain high-quality signal features to discriminate OSA from controls. To classify simultaneous sleep ECG and PPG signals recorded from OSA and non-OSA patients, various feed forward neural network (FFNN) architectures are used and mean relative absolute error (MRAE) is applied on FFNN results to show affectivities of developed algorithm. The FFNN architectures were trained with various numbers of neurons and hidden layers. The results show that HRV synchronization is directly related to sleep respiratory signals. The CPSD of the HRV series can confirm the clinical diagnosis; both groups determined by an expert physician can be 99% truly classified as a single hidden-layer FFNN structure with 0.0623 MRAE, in which the maximum and phase values of the CPSD curve are assigned as two features. In future work, features taken from different physiological signals can be added to define a single feature that can classify apnea without error.
URI
https://doi.org/10.4015/S1016237215500118
http://hdl.handle.net/20.500.11851/1017
Collections
  • Biyomedikal Mühendisliği Bölümü / Department of Biomedical Engineering

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 




by OpenAIRE

Browse

All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateBy TypeKapsamWOSScopusPubMedTR-DizinAvrupa Birliği Destekli Yayın SayısıTÜBİTAK Destekli Yayın SayısıDilErişimThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit DateBy TypeKapsamWOSScopusPubMedTR-DizinAvrupa Birliği Destekli Yayın SayısıTÜBİTAK Destekli Yayın SayısıDilErişim

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


Creative Commons License
Institutional Repository by TOBB ETU Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License..

Institutional Repository:



TOBB ETU için Devinim Yazılım Eğitim Danışmanlık tarafından özelleştirilerek kurulmuştur.