Show simple item record

dc.contributor.authorYilmaz, Y.A.
dc.contributor.author Tandogan, S.E.
dc.contributor.author Hayran, Z.
dc.contributor.authorGiden, I.H.
dc.contributor.author Turduev, M.
dc.contributor.author Kurt, Hamza
dc.date.accessioned2019-06-26T07:43:37Z
dc.date.available2019-06-26T07:43:37Z
dc.date.issued2017-07
dc.identifier.citationYilmaz, Y. A., Tandogan, S. E., Hayran, Z., Giden, I. H., Turduev, M., & Kurt, H. (2017). Theoretical and experimental investigations of efficient light coupling with spatially varied all dielectric striped waveguides. Journal of Applied Physics, 122(3), 033101.en_US
dc.identifier.issn218979
dc.identifier.urihttps://aip.scitation.org/doi/10.1063/1.4994032
dc.identifier.urihttp://hdl.handle.net/20.500.11851/1344
dc.description.abstractIntegrated photonic systems require efficient, compact, and broadband solutions for strong light coupling into and out of optical waveguides. The present work investigates an efficient optical power transferring the problem between optical waveguides having different widths of in/out terminals. We propose a considerably practical and feasible concept to implement and design an optical coupler by introducing gradually index modulation to the coupler section. The index profile of the coupler section is modulated with a Gaussian function by the help of striped waveguides. The effective medium theory is used to replace the original spatially varying index profile with dielectric stripes of a finite length/width having a constant effective refractive index. 2D and 3D finite-difference time-domain analyzes are utilized to investigate the sampling effect of the designed optical coupler and to determine the parameters that play a crucial role in enhancing the optical power transfer performance. Comparing the coupling performance of conventional benchmark adiabatic and butt couplers with the designed striped waveguide coupler, the corresponding coupling efficiency increases from approximately 30% to 95% over a wide frequency interval. In addition, to realize the realistic optical coupler appropriate to integrated photonic applications, the proposed structure is numerically designed on a silicon-on-insulator wafer. The implemented SOI platform based optical coupler operates in the telecom wavelength regime (? = 1.55 ?m), and the dimensions of the striped coupler are kept as 9.77 ?m (along the transverse to propagation direction) and 7.69 ?m (along the propagation direction) where the unit distance is fixed to be 465 nm. Finally, to demonstrate the operating design principle, the microwave experiments are conducted and the spot size conversion ratio as high as 7.1:1 is measured, whereas a coupling efficiency over 60% in the frequency range of 5.0-16.0 GHz has been also demonstrated. © 2017 Author(s).en_US
dc.language.isoengen_US
dc.publisherAmerican Institute Of Physics Inc.en_US
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectPhotonic crystalsen_US
dc.subjectphotonicsen_US
dc.subjectgraded photonicen_US
dc.titleTheoretical and experimental investigations of efficient light coupling with spatially varied all dielectric striped waveguidesen_US
dc.typearticleen_US
dc.relation.journalJournal Of Applied Physicsen_US
dc.contributor.departmentTOBB ETU, Faculty of Engineering, Department of Electrical & Electronics Engineeringen_US
dc.contributor.departmentTOBB ETÜ, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume122
dc.identifier.issue3
dc.contributor.orcidhttps://orcid.org/0000-0002-0749-4205
dc.identifier.scopus2-s2.0-85024894316
dc.contributor.tobbetuauthorKurt, Hamza
dc.contributor.YOKid200103
dc.identifier.doi10.1063/1.4994032
dc.contributor.ScopusAuthorID57189350201
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıtr_TR


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record