Show simple item record

dc.contributor.authorDuman, Oktay
dc.date.accessioned2019-07-04T14:19:44Z
dc.date.available2019-07-04T14:19:44Z
dc.date.issued2016-09
dc.identifier.citationDuman, O. (2016). Singular approximation in polydiscs by summability process. Positivity, 20(3), 663-676.en_US
dc.identifier.issn1385-1292
dc.identifier.urihttps://doi.org/10.1007/s11117-015-0379-8
dc.identifier.urihttp://hdl.handle.net/20.500.11851/1717
dc.description.abstractIn this paper, we approximate a continuous function in a polydisc by means of multivariate complex singular operators which preserve the analytic functions. In this singular approximation, we mainly use a regular summability method (process) from the summability theory. We show that our results are non-trivial generalizations of the classical approximations. At the end, we display an application verifying the singular approximation via summation process, but not the usual sense.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectRegular summability processen_US
dc.subjectComplex Picard singular operatorsen_US
dc.subjectApproximation in the polydiscen_US
dc.titleSingular approximation in polydiscs by summability processen_US
dc.typearticleen_US
dc.relation.journalPositivityen_US
dc.contributor.departmentTOBB ETU, Faculty of Science and Literature, Depertment of Mathematicsen_US
dc.contributor.departmentTOBB ETÜ, Fen Edebiyat Fakültesi, Matematik Bölümütr_TR
dc.identifier.volume20
dc.identifier.issue3
dc.identifier.startpage663
dc.identifier.endpage676
dc.contributor.orcidhttps://orcid.org/0000-0001-7779-6877
dc.identifier.wosWOS:000382151500009
dc.identifier.scopus2-s2.0-84945156798
dc.contributor.tobbetuauthorDuman, Oktay
dc.identifier.doi10.1007/s11117-015-0379-8
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıtr_TR


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record