Institutional Repository
    • Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   University of Economics & Technology Repository
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • View Item
  •   University of Economics & Technology Repository
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Classification of HIV data By Constructing A Social Network with Frequent Itemsets

Thumbnail
Date
2016
Author
Kocak, Yunuscan
Özyer, Tansel
Alhajj, Reda
Metadata
Show full item record
Abstract
Acquired immune deficiency syndrome (AIDS) is the last and the most life-threatening phase of Human Immunodeficiency Virus (HIV) disease. HIV attacks and heavily affects the immune system of the body which remains unable to resist the disease. HIV uses white blood cells to replicate itself and spreads everywhere in the body. The lifecycle of HIV disease, especially the replication stage must be prominently understood in order to develop effective drugs for treatment. HIV-1 protease enzyme is in charge of cleaving an amino acid octamer into peptides which are used to create proteins by virus. It should be scrutinized properly since it is a potential target to tightly bind drugs to protease for blocking the virus action at an early stage before cell infection. It is very critical to induce a model and predict cleavage of HIV-1 protease on octamers. Several machine learning approaches have been applied for predicting and profiling cleavage rules. However, we propose a novel general approach that can also be applied on different domains. It basically utilizes social network analysis and data mining techniques for classification. This method yet presents promising results that are comparable with existing machine learning methods, besides it gives the opportunity to validate the results obtained by using other techniques from social network analysis perspective. We have used the HIV-1 protease cleavage data set from UCI machine learning repository and demonstrated the effectiveness of our proposed method by comparing it with decision tree, Naive-Bayes and k-nearest neighbor methods.
URI
https://ieeexplore.ieee.org/document/7752354
http://hdl.handle.net/20.500.11851/2029
Collections
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 




by OpenAIRE

Browse

All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateBy TypeKapsamWOSScopusPubMedTR-DizinAvrupa Birliği Destekli Yayın SayısıTÜBİTAK Destekli Yayın SayısıDilErişimThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit DateBy TypeKapsamWOSScopusPubMedTR-DizinAvrupa Birliği Destekli Yayın SayısıTÜBİTAK Destekli Yayın SayısıDilErişim

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


Creative Commons License
Institutional Repository by TOBB ETU Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License..

Institutional Repository:



TOBB ETU için Devinim Yazılım Eğitim Danışmanlık tarafından özelleştirilerek kurulmuştur.