Institutional Repository
    • Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   University of Economics & Technology Repository
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü / Department of Material Science & Nanotechnology Engineering
  • View Item
  •   University of Economics & Technology Repository
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü / Department of Material Science & Nanotechnology Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Influence of Electrical and Ionic Conductivities of Organic Electronic Ion Pump on Acetylcholine Exchange Performance

Thumbnail
View/Open
InfluenceofElectrical.pdf (1.763Mb)
Date
2017
Author
Abdullayeva, Nazrin
Sankır, Mehmet
Metadata
Show full item record
Abstract
Abstract By using an easy and effective method of depositing conjugated polymers (PEDOT:PSS) on flexible substrates, a new design for organic bioelectronic devices has been developed. The purpose was to build up a system that mimics the motion of neurotransmitters in the synaptic cleft by obtaining an electrical to chemical signal transport. Fourier transform infrared (FTIR) spectroscopy and Raman measurements have demonstrated that electrochemical overoxidation region which separates the pristine PEDOT:PSS electrodes and allows ionic conduction has been achieved successfully. The influence of both electrical and ionic conductivities on organic electronic ion pump (OEIP) performances has been studied. The ultimate goal was to achieve the highest equilibrium current density at the lowest applied voltage via enhancing the electrical conductivity of PEDOT:PSS and ionic conductivity of electrochemically overoxidized region. The highest equilibrium current density, which corresponds to 4.81 × 1017 number of ions of acetylcholine was about 41 μA cm−2 observed for the OEIP with the electrical conductivities of 54 S cm−1. This was a threshold electrical conductivity beyond which the OEIP performances were not changed much. Once Nafion™ has been applied for enhancing the ionic conductivity, the equilibrium current density increased about ten times and reached up to 408 μA cm−2. Therefore, it has been demonstrated that the OEIP performance mainly scales with the ionic conductivity. A straightforward method of producing organic bioelectronics is proposed here may provide a clue for their effortless mass production in the near future.
URI
https://www.mdpi.com/1996-1944/10/6/586
http://hdl.handle.net/20.500.11851/2993
Collections
  • Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü / Department of Material Science & Nanotechnology Engineering

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 




by OpenAIRE

Browse

All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateBy TypeKapsamWOSScopusPubMedTR-DizinAvrupa Birliği Destekli Yayın SayısıTÜBİTAK Destekli Yayın SayısıDilErişimThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit DateBy TypeKapsamWOSScopusPubMedTR-DizinAvrupa Birliği Destekli Yayın SayısıTÜBİTAK Destekli Yayın SayısıDilErişim

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


Creative Commons License
Institutional Repository by TOBB ETU Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License..

Institutional Repository:



TOBB ETU için Devinim Yazılım Eğitim Danışmanlık tarafından özelleştirilerek kurulmuştur.