Show simple item record

dc.contributor.authorKılıç, Emrah
dc.contributor.authorÖmür, Neşe
dc.contributor.authorKoparal, Sibel
dc.date.accessioned2020-06-24T13:40:39Z
dc.date.available2020-06-24T13:40:39Z
dc.date.issued2018-04
dc.identifier.citationKilic, E., Ömür, N. and Koparal, S. (2018). Formulae For Two Weighted Binomial Identities With The Falling Factorials. Ars Comb., 138, 223-231.en_US
dc.identifier.issn0381-7032
dc.identifier.urihttp://hdl.handle.net/20.500.11851/3554
dc.identifier.urihttps://pdfs.semanticscholar.org/b8bd/338dd2dce1893415834549c2b977fb81afbc.pdf
dc.description.abstractIn this paper, we will give closed formulae for weighted and alternating weighted binomial sums with the generalized Fibonacci and Lucas numbers including both falling factorials and powers of indices. Furthermore we will derive closed formulae for weighted binomial sums including odd powers of the generalized Fibonacci and Lucas numbers. © 2018 Charles Babbage Research Centre. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherCharles Babbage Research Centreen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLuca numberen_US
dc.subjectfibonaccien_US
dc.subjectoctonionen_US
dc.subjectbinary linear recurrencesen_US
dc.subjectbinomial sumsen_US
dc.subjectclosed formulaen_US
dc.subjectoperatoren_US
dc.titleFormulae for two weighted binomial identities with the falling factorialsen_US
dc.typearticleen_US
dc.relation.journalArs Combinatoriaen_US
dc.contributor.departmentTOBB ETÜ, Fen Edebiyat Fakültesi, Matematik Bölümütr_TR
dc.contributor.departmentTOBB ETU, Faculty of Science and Literature, Department of Mathematicsen_US
dc.identifier.volume138en_US
dc.identifier.startpage223en_US
dc.identifier.endpage231en_US
dc.identifier.wosWOS:000430156300018
dc.identifier.scopus2-s2.0-85046855704
dc.contributor.tobbetuauthorKılıç, Emrah
dc.contributor.YOKid29574
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıtr_TR


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record