Institutional Repository
    • Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   University of Economics & Technology Repository
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • View Item
  •   University of Economics & Technology Repository
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fuzzy classification methods based diagnosis of parkinson’s disease from speech test cases

Thumbnail
Date
2019
Author
Dastjerd, N.K.
Sert, O.C.
Özyer, Tansel
Alhajj, R.
Metadata
Show full item record
Abstract
Background: Together with the Alzheimer’s disease, Parkinson’s disease is considered as one of the two serious known neurodegenerative diseases. Physicians find it hard to predict whether a given patient has already developed or is expected to develop the Parkinson’s disease in the future. To overcome this difficulty, it is possible to develop a computing model, which analyzes the data related to a given patient and predicts with acceptable accuracy when he/she is anticipated to develop the Parkinson’s disease. Objectives: This paper contributes an attractive prediction framework based on some machine learning approaches for distinguishing people with Parkinsonism from healthy individuals. Methods: Several fuzzy classifiers such as Inductive Fuzzy Classifier, Fuzzy Rough Classifier and two types of neuro-fuzzy classifiers have been employed. Results: The fuzzy classifiers utilized in this study have been tested using the “Parkinson Speech Dataset with Multiple Types of Sound Recordings Data Set” of 40 subjects available on the UCI repository. Conclusion: The results achieved show that FURIA, MLP-Bagging-SGD, genfis2 and scg1 performed the best among the fuzzy rough, WEKA, adaptive neuro-fuzzy and neuro-fuzzy classifiers, respectively. The worst performance belongs to nearest neighborhood, IBK, genfis3 and scg3 among the formerly mentioned classifiers. The results reported in this paper are better in comparison to the results reported in Sakar et al., where the same dataset was used, with utilization of different classifiers. This demonstrates the applicability and effectiveness of the fuzzy classifiers used in this study as compared to the non-fuzzy classifiers used by Sakar et al. © 2019 Bentham Science Publishers.
URI
https://www.eurekaselect.com/172984/article
http://hdl.handle.net/20.500.11851/3845
Collections
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 




by OpenAIRE

Browse

All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateBy TypeKapsamWOSScopusPubMedTR-DizinAvrupa Birliği Destekli Yayın SayısıTÜBİTAK Destekli Yayın SayısıDilErişimThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit DateBy TypeKapsamWOSScopusPubMedTR-DizinAvrupa Birliği Destekli Yayın SayısıTÜBİTAK Destekli Yayın SayısıDilErişim

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


Creative Commons License
Institutional Repository by TOBB ETU Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License..

Institutional Repository:



TOBB ETU için Devinim Yazılım Eğitim Danışmanlık tarafından özelleştirilerek kurulmuştur.