Institutional Repository
    • Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   University of Economics & Technology Repository
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
  • View Item
  •   University of Economics & Technology Repository
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Backhaul-Aware Optimization of UAV Base Station Location and Bandwidth Allocation for Profit Maximization

Thumbnail
View/Open
Text (1.098Mb)
Date
2020
Author
Cicek, Cihan Tugrul
Gültekin, Hakan
Tavlı, Bülent
Yanikomeroglu, Halim
Metadata
Show full item record
Abstract
Unmanned Aerial Vehicle Base Stations (UAV-BSs) are envisioned to be an integral component of the next generation Wireless Communications Networks (WCNs) with a potential to create opportunities for enhancing the capacity of the network by dynamically moving the supply towards the demand while facilitating the services that cannot be provided via other means efficiently. A significant drawback of the state-of-the-art have been designing a WCN in which the service-oriented performance measures (e.g., throughput) are optimized without considering different relevant decisions such as determining the location and allocating the resources, jointly. In this study, we address the UAV-BS location and bandwidth allocation problems together to optimize the total network profit. In particular, a Mixed-Integer Non-Linear Programming (MINLP) formulation is developed, in which the location of a single UAV-BS and bandwidth allocations to users are jointly determined. The objective is to maximize the total profit without exceeding the backhaul and access capacities. The profit gained from a specific user is assumed to be a piecewise-linear function of the provided data rate level, where higher data rate levels would yield higher profit. Due to high complexity of the MINLP, we propose an efficient heuristic algorithm with lower computational complexity. We show that, when the UAV-BS location is determined, the resource allocation problem can be reduced to a Multidimensional Binary Knapsack Problem (MBKP), which can be solved in pseudo-polynomial time. To exploit this structure, the optimal bandwidth allocations are determined by solving several MBKPs in a search algorithm. We test the performance of our algorithm with two heuristics and with the MINLP model solved by a commercial solver. Our numerical results show that the proposed algorithm outperforms the alternative solution approaches and would be a promising tool to improve the total network profit.
URI
https://ieeexplore.ieee.org/document/9174722
http://hdl.handle.net/20.500.11851/4073
Collections
  • Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
  • Endüstri Mühendisliği Bölümü / Department of Industrial Engineering

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 




by OpenAIRE

Browse

All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateBy TypeKapsamWOSScopusPubMedTR-DizinAvrupa Birliği Destekli Yayın SayısıTÜBİTAK Destekli Yayın SayısıDilErişimThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit DateBy TypeKapsamWOSScopusPubMedTR-DizinAvrupa Birliği Destekli Yayın SayısıTÜBİTAK Destekli Yayın SayısıDilErişim

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


Creative Commons License
Institutional Repository by TOBB ETU Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License..

Institutional Repository:



TOBB ETU için Devinim Yazılım Eğitim Danışmanlık tarafından özelleştirilerek kurulmuştur.