Institutional Repository
    • Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   University of Economics & Technology Repository
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Makine Mühendisliği Bölümü / Department of Mechanical Engineering
  • View Item
  •   University of Economics & Technology Repository
  • Akademik Arşiv / Institutional Repository
  • Mühendislik Fakültesi / Faculty of Engineering
  • Makine Mühendisliği Bölümü / Department of Mechanical Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep Multi-Layer Perceptron based Prediction of Energy Efficiency and Surface Quality for Milling in The Era of Sustainability and Big Data

Thumbnail
Date
2020
Author
Serın, Gokberk
Sener, Batihan
Gudelek, M. Ugur
Özbayoğlu, Ahmet Murat
Ünver, Hakkı Özgür
Metadata
Show full item record
Abstract
In advanced industries such as aerospace, medical and automotive, high precision machining is increasingly required for many parts made by difficult-to-cut alloys. Machine tool manufacturers respond to this demand by developing more advanced machine tools that have advanced sub-systems for attaining high-precision and wide flexibility, with the expense of energy efficiency. Unfortunately, worldwide primary energy resources continue to run out. Furthermore, GHG emissions mostly related to energy, remain to be a global issue with the ever-increasing economic expansion in many developed and developing economies. In the meantime, increasing use of sensors and Internet of Things (IoT) technologies in shop-floors set off a data explosion, warranting the use of emerging Deep Learning techniques to cope with “Big Data” reality of manufacturing. Therefore, in this study a Deep Multi-Layer Perceptron (DMLP) based algorithm for predicting surface roughness and specific cutting energy - major measures of precision and energy efficiency-, has been developed for slot milling of AL7075. Design of Experiment is used to collect the required data and train DMLP based model. The finalized prediction algorithm estimated quality and energy efficiency with 91.5% and 90.7% accuracy rates in slot milling, verified by additional machining and data collection.
URI
https://doi.org/10.1016/j.promfg.2020.10.164
http://hdl.handle.net/20.500.11851/4124
Collections
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • Makine Mühendisliği Bölümü / Department of Mechanical Engineering

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 




by OpenAIRE

Browse

All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateBy TypeKapsamWOSScopusPubMedTR-DizinAvrupa Birliği Destekli Yayın SayısıTÜBİTAK Destekli Yayın SayısıDilErişimThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit DateBy TypeKapsamWOSScopusPubMedTR-DizinAvrupa Birliği Destekli Yayın SayısıTÜBİTAK Destekli Yayın SayısıDilErişim

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


Creative Commons License
Institutional Repository by TOBB ETU Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License..

Institutional Repository:



TOBB ETU için Devinim Yazılım Eğitim Danışmanlık tarafından özelleştirilerek kurulmuştur.