Show simple item record

dc.contributor.authorKılıç, Emrah
dc.date.accessioned2019-03-22T06:58:54Z
dc.date.available2019-03-22T06:58:54Z
dc.date.issued2018-05-08
dc.identifier.citationKilic, E. (2018). Three binomial sums weighted by falling and rising factorials. Turkish Journal of Mathematics, 42(3), 876-880.en_US
dc.identifier.issn1300-0098
dc.identifier.urihttp://journals.tubitak.gov.tr/math/issues/mat-18-42-3/mat-42-3-11-1706-24.pdf
dc.identifier.urihttp://hdl.handle.net/20.500.11851/812
dc.description.abstractIn this paper, we will investigate and evaluate, in closed forms, three binomial sums weighted by falling and rising factorials. We first use the relationships between the rising, falling factorials and the binomial coefficients. Then we rewrite the claimed identities in terms of generalized hypergeometric functions to prove the claimed results.en_US
dc.language.isoengen_US
dc.publisherTUBITAKen_US
dc.relation.isversionof10.3906/mat-1706-24
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBinomial sumsen_US
dc.subjectHypergeometric seriesen_US
dc.subjectRising and falling factorialsen_US
dc.titleThree binomial sums weighted by falling and rising factorialsen_US
dc.typearticle
dc.relation.journalTurkish Journal of Mathematicsen_US
dc.contributor.departmentTOBB ETÜ, Fen Edebiyat Fakültesi, Matematik Bölümütr_TR
dc.contributor.departmentTOBB ETU, Faculty of Science and Literature, Depertment of Mathematicsen_US
dc.identifier.volume42
dc.identifier.issue3
dc.identifier.startpage876
dc.identifier.endpage880
dc.identifier.wosWOS:000439014600011
dc.identifier.scopus2-s2.0-85046784080
dc.contributor.tobbetuauthorKılıç, Emrah
dc.contributor.YOKid29574
dc.identifier.doi10.3906/mat-1706-24
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıtr_TR
dc.identifier.TRDizinhttps://app.trdizin.gov.tr/publication/paper/detail/TXpRNE9EZzNOdz09


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record